LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of. information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
- research discussed herein.

1



LA-UR -86-3300 LA-UR--86-3300
B/P DE88 009178

Los Alamos Nahona: Laboratory .8 operaled Dy \he University of Calforma for the United Siates Department of Energy under contract W-7405-ENG-36

TITLE BENCHMARKING THE IBM 3090 WITH VECTOR FACILITY

AUTHOR(S) Ralph G, Brickner
Harvev J. Wasserman
Ann H. Haves
James W, Moore

SUBMITTED 10 For distribution upon request

DISCLAIMER

This repurt was prepated as an account of work sponsared hy an ageocy ol the Uaned States
Guovernment  Nether the Umited States CGiovernment por any agency thereol, nor any ol ther
employees, makes any warranty, express or imphed, o1 assumes any legal hubility or respona
Wly for the arcuracy, completeness, or usetulness of any information, apparatus, peaduct, or
priwess discloned, or represents that s use would not infringe privaiely owned nights Reter
ence Lerein (o any speaibie commercil prnduct, prmess, or service by teade name, trademark,
manulacturer, or atherwine does ool necessanily comtitute o imply s endorsement, recom
mendation, or tuvocing by the Uinited States Government or any agency thereol  The views
and opimns of nuthors expressed heren do not necessanily sate o reflect those of the
United States Gavernment or any agency thereol

Hy accrpani e of thia griicig the pubhahar tacogni?es that The U S (lovernmeni retaing & nanesciuysive royaity 11ee icense 1o pubhish or reproduce
the publanag form of thig contabutbion or o sllow others ty da so0 for U S (lovarnment purpnses

IThe {09 minmos NAKORAL Laboralory requesty that the publishar dantily Ihig a7hicle an work Dertormad undel The guspices of the U S Depariment ol | nargy

Al
e ..
1 ' ' '
+ {

INSTRIBUTION OF NS OUCUMENT 13 UNDIMITEQ

Los Alamos: National Laboratory
L@g A @m@) Los Alamos.New Mexico 87545



BENCHMARKING THE IBM 3090 WITH VECTOR FACILITY

Rulph G. Brickner
Harvey J. Wussermun
Ann H. Haves
Jumes W, Moore

Computing and Corvmunications Division
l.os Alamos National l.aboratory

I. INTRODUCTION

The IBM 3090 with Vector Facility is IBM's first foray into the scientific vector processor
market since Cray Research Inc. created that market in the mia 1970s The appearance of the
3090 both legitimizes \ eclor processing to the masses and serves notice 1o (*ray that IBM intends to
be a real presence in the high-end scientific computing arena. !\ 1s. therefore. natural that we at
l.os Alamos are very interested in the performance of thit machine. ()ver the past “ew months. we
have worked with IBM to obtain an accurate benchmark of the machine. The 3090 15 a complex,
shared-memory. multiprocessor system. and we have attempted 10 address at least the major
components of the sysiem performance in this benchmark: scalar speed. vector speed. compiler
perfarmance and the Multitasking Facility. As usual. the benchmark= are intended 10 measure
computational perfermance on a dedicated system. In paricular. this means ne 1°0) or throughput
measurements were made.

We urge the reader to keep the following points in mind W hile reading this report. First. the
31090 1 a general-purpose, commercial mainframe It is not intended to be a state-of-the-art
saentific supercomputer. However, 1t is intended 10 be a high performance computer. so IBM has
concentrated on making 1ts scalar performance very good. This has been accomplished by
evolutionary. not revolutionary, development from previous IHM mainframes. the JO8X series.
I'he xecond point 1o heep in mind is that the Vector Facility 1s an add-on piece of hardware. The
3OO0 w ax designed for the commercial marketplace where reasonable speed 1s 10 be obtained at
reascnable cost. The design of the Vector Facility was driven by the need to fit in with existing
hardware, not by the desire 10 build a superfast vector machine. In fact. the Vector Facility
increases the 3090 cost by only 10 15%, while performance increases may be much greater.

In this report. we will first describe the hardware and software currently comprising the 3090
svstem. Next. we will discuss the objectives and methodology of our benchmarking trip to
Gaithersburg. Maryland. and Kingston, New York. We then present the actual benchmack results.
along with the comparable nun.bers for the CRAY N\ MP. A discussion of the results follows.
along with an analysis of hardware and compiler {ectures and performance. A briel section
describes Lhe results of the Multitasking Facility benchmark and the muluntasking primitives.
Finally, we present our conclusions on the suitability of this machine tor our workload.



I1. IBM 3090 SYSTEN ARCHITECTURE

Currently. the IBM 3090 is available in {cur models: the single-processor Models 150 and -
180, the dyadic Model 200. and the four-processor Model 300. Since the single-processor models
lack multitasking capability, we will describe only the multiprocessor models.

A. The 3090 Central Processor

The 3090 central processor has an 18.5 ns cvcle time and iv constructed with emitter coupled
logic technology and IBM's thermal conduction module pachaging. The processor is microcnde
controlled and consisis of several elements. The instruction element decodes instructions.
calculates addresses. sends feich requests 1o storage control. and provides the execution element
with operation codes. operands. and operand addresses. The execution element processes
instructions and interrupts. initiates control funcuons. and performs the scalar logical and
arithmetic computations. The instrucuion and execution elements are pipelined and operate in
parallel. A third element. the control storage element. provides the instruction and execution
elements with microcode and contains control storage and the processor registers. Finally. a buffer
control element handles all main memory requests and contams the 64-kbvie high-speed cache.
cache management hardware, snd virtual memory support hardware.

Several features of the 3090 proces:or contribute (e high speed scalar arithmetic performance.
First. a separate fixed- and floating: point multiply unn accelerates these computations. Necund, a
new technique was emploved for floating point add subtract, saving one machine cvcle per
calculation over previous IBM designs  Third. the processor has special “ircuitry to reduce
overhead in inner IX) loops. Finally. all relevant internal data paths. as well as all data paths in
the storage hierarchy. are multiples ¢f 64 hits

B. Memory Hierarchy

The 30 has a three-level storage hierarchy. The fastest storage 1s the 64-kbyte “write-in”
cache contained 1n each central processor. This cache 15 addressable only by the processor ir which
't hes. but cache-to-cache transfcrs mayv be inade between processors 1o improve performance.
Transfers between cache and central storage are in 128-byte blocks The second level is the shared
central storage. Central storage employvs o SFCDFD scheme. and defective memory may be
deallocated 1n 4-hbvie increments. A 7-bit storage protection key provides hardw are storage
protection 1n 4-kbyte increments. The final level in the hierarchy 1v an optional expanded storage.
The expanded storage 18 intended to reduce the paging and swapping 1°0 overhead incurred by the
virtual memory and muluprocessing. ‘I'ransfers betw een central and expanded storage are done in
4 kbvte pages | xpanded storage can detect and correct s:ngle- and double- bit errors and can detect
triple it and some multiple-bit errors  Central storage 1s a standard 64- Mbyte on the Model 200
and 128 Mbyte on the Model 400 1 xpanded storage of 64 Mbyte or 128 VMbyie mav be installed
on the Model 200, while 125 Mbyte or 2560 Mbyie may be installed on the Maodel 400

C. The 3090 Vector Facility

The Vector Facihty s a field upgradable addition to the 3090 central processor. Any or all of
the processors in a JOY0 system may have attached Vector Facilives, and each Vector Facility
serves as an extension of the processors’ instruction and eaeculion elements. Data types support~d
in hardware are binary (fixed -point) and 32 and 64 bit floating point numbers. There are sixleen
32-tit vector registers. each containing 128 elements, which may be zonfigured as eight 64-bit
registers. ‘These registers read from and write to the cache. There are two vector functional units:



add logical and multiply divide. Compound multiply and add. muluply and subtract. and
multiply and accumulate instructions drive both functional unics generating two floating-point
results per clock fer an absolute peak rate of 108 MELOPS? per processor. A total of 171 new
instructions are provided for driving the Vector Facility. These instructions include vector add.
subtract. muluply, divide. and compare. Operands mayv be in storage or in vector or scalar
registers. and results go 1o vector or scalar registers. Addressing modes for vectors in storage
include constant stride. indirect addressing (vector of indices). and masked selection. In addition to
these and the compound instructions, there are vector count instructions and save. restore. and
clear vector register instructions. A design goal of the Vector Facility was to provide 2 maximum
of four times performance increase over the 309C scalar speeds.

D. The 1/0 Subsystem

The 3090 Model 200 provides 32 (or optionally. 40 or 48) 170 channels; the Model 400
provides twice those numbers LUp to four channels (Model 200) or eight channels (Model 400)
mayv be configured for byvie multiplexing. All others operate 1n block-multiplex mode. Block-
multiplex operation results in @ maximum data transfer rate of 3 Mbyte/s. The channels are
controlled by a channel control element (CCE), which s a separate microcode-controlled processor.
The Model 200 has one CCL. the 400 has two CCFEs. The CCE allows any processor 10 access any
channel under svstem sof tware control. Finallv. a syster control element arbitraies storage
requests among the central processors and the 1 O subsystiem.

I11. IBM 3090 SOFTWARE

Two operating svstems are available for the 3090. MV'S 'SP (Multiple Virtual System/
Svstem Product) and VM 'SP HPO (Virtual Machine System Product. High-Performance Option).
Time- Shar:ng Option (TSO) 18 available for MVS to provide intersctive capabilities. MVS is
primarily batch oriented ¢nd system communication 1s by means of Job Control Language. V'M
supports a variety of gues! operating <vstems including Conversational Monitor System (CMs). an
interactive virtual operating syvstem.

Software support for vectorization and multitasking s provided by VS Fortran. a superset of
Fortran 77 VS Fortran provides three levels of scalar optimization and two levels of
vectorization. Compiler cutput includes fairly detarled analvsis of source code for vectorization.
The compiler may cheose 10 vectorize one of several nested loops based on its analysis. (Ine feature
of the vectorizing compiler i an economy analvzer. which attempts to evaluate the relative speed
of scalar and veclor versions o a compiled loop. generating code for the fastest one. In the future.
IBM plans to offer compiler directives to aid in vectorization (although they are curreatly not
avairlable in a product). Multitashing has been implemented with three subroutine calls instead of
Fortran language extensions

Supporting sof tware includes a hot spot analvzer (profiler). a source level interactive
debugger. and an cxtensive set of mathematical subroutines called the Engineering and Scientific
Subroutine Library (ESS1). FSSE includes single- and double precision routines and vector and
scalar versions. Subroutines include linear equation solution, eigensvatem analysis, signal
processing applications, and random number generation.

*One MPTLOPS equals one mylhon Noating point operations per second.



IV. THE BENCHMARKING TRIP

On April 15-16, 1986. members of the -3 benchmark team performed tests on the IBM
3090 200 at the IBM Washington Systems Center 1in Gaithershurg. Maryland. The standard
Los Alamos benchmark set was run on a two-processor svstem with 64 Mbytes of memory using
the MV'S operating system. A descripuion of the programs in the set can be found in Reference 1.
On April 18, further tests were run at IBM in Kingston. New York. The purpose of this second
phase v as 10 test IBM's Mulutasking Facihity (MTF) and also 10 invesugate the effect of compiler
directives for vectorization available oniyv on 2 version of the compiler at Kingston. The machine at
Kingston wax alse a 3090°200. At both sites. we ran on dedicated systems using Version 2.1.0
(January 1986) of the Fortran Compiler. 1BM perscnnel later ran some of our codes using an older
version of the compiler (Version 1.1.0 of September 1985); these results are discussed below. It
was necessary to use the \'S Fortran “AD(DBLPAD4)" compiler option 1o select 64-bit floating-
point words on all of the codes.

In Gaithersburg. all programs were run in both scalar and \ ector mode to determine the effect
of the Vector Facilitv on performance. Both scalar and vector numbers are reported. We also
investigated an additional feature of the 3090 architecture at Gaithersburg’ one of the processors tn
the Model 200 has a direct path from memory 10 1ts cache bypassing the system control element.
which ordinarily handles memory requests. This bypass is known as the “'fast path”" to the
processor’s cache. Surmising that this processor would show improved performance in vector
procesung. we atiempted o observe this effect by running the benchmarks first with both
processors enabled and then with either one or the other processcr enabled. We observed a shight
degradation in performance (less than 5% ) when using only one processor, attributing this to the
fact that calls 1o the disabled processor had to be rercuted back 0 the enabled processor. Virtually
no difference in iming was observed when either processor was used alone. We conclude that use
of the direct memory to-register path had no significant effect on the codes we ran.

V. BENCHMARKING RESULTS

A. Standard Benchmerks

Table I shows timings in both vector and scalar mode for the standar.! benchmark set. For
comparison purposes, timings from a single processor of 8 CRAY X-MP/48 are given. LEffectively,
two levels of vectorization are available on the 3090: Lev~! 1 performs vectorization at the "loop™
level, while | evel 2 performs vectorization on a statement-by-statement level. All vector timings
for the standard benchmarks on the 3090 were done using vector lLevel 2. It should be not~4 that
the SIMPL | code detected s compiler bug when run with vector Level 2. Some answers were
incorrect. Subsequent decomposition of the offending loop into smaller sections produced correct
answers at level 2

Several observations can be made {rom the timings.

1 Scalar 3090 execution produced results comparable to that of scalar N MP results on
progrums BMK4A, BMRS, BMK 14, BMK21A. BMKR 22, and all cases of SIMPLE. In
some instances. the best 3090 results were the vector times, In a few instances,
however. the best IBM numbers were obtained from scalar runs. Recall that cvcle
tLimes for the two machines are. respectively. 14.5 ns tor the JU90 and 9.5 ns tor the
X-MP. The scalar times for BMK11A and BMK11B are anomalously slow compared



6,

with the N-MP. Neither we nor personnel at IBM can explain this anomaly at the
present time.

In many cases. scalar and vector performance on the 3090 are nearly identical.
(Exceptions to this occur on BMK8A1, BMK11A. and BMK11B.) This is in part due to
Lhe conservative nature of the Fortran compiler’s economy analyvzer. which generates
scalar code when 1t cannot determine that vector code would be faster or that vector
code definitely would run slower. One example is long vectors with non-unit stride. In
some of these cases, il may be true that scalar mode will be faster. This is true because
of the access time needed 10 obtain data from main memory when the data are not in
cache. (See the discussion of BMK8A2 below.) Another example is for DO loops with an
unknown number of trips. Since scalar mode is faster for short vectors. the economy
analyzer will generate scalar code if it cannot determine that the number of trips is
relatively large. However. as discussed in point 6 below, different versions of the
compiler employ different algorithms for making such decisions. with large differences in
erformance.

Integer calculations, as evidenced on BNK 1, are performed efficiently on the 3090.

As an eaperiment. the compiler direcuve "PREFER VECTOR™ was used to force
vectorization in one loop of HYDRO (results described elsewhere in this report). in spite
of the fact that the cost analy zer predicted scalar performance would be more optimal.
Indeed. the code executed more slowly in vector mode. An example of the 1yvpe of loop
codhing that occurs of ter 1n the benchmark codes. for which the cost analvzer selects
<calar operation, is given below:

DO35)=1512
TESP()Y = TEST(2.0)
35 CONTINLUE

Again. the non-unit stride in memory prohibits vectorization of this loop. Depending on
the size of the first dimension of the variable TEST. successive fetches of 16-word blocks
10 access the proper values of TLST do not make vectorization cost effective.

Programs BMKAAL BMK11A. and BMK11B exhibited the greztest observed speedup
(2+) using vectorization

Use of the older version of the v'S Fortran compiler produced significant differences in
programs BMK 14 and BMK22 (both highly vectorizable codes). Using Version 1.1.01n
vector mode. BMK 14 ran in 6.2 s and BMK22 ran in 18.2 & these 1imings represent
about a two-fold speedup over both the v:alar mode times for both compilers and the
vector mode times for the Version 2.1.0 compiler. Apparently, the newer version of the
compiler was to be used with exphicii vectorization directives (even though these had not
been implemented at Gaithersburg) and thus was not as “aggressive'’ at vectorizing as
was the older compiler. For example. Version 1 1 0 vectorized the SAXNPY routine in
BMK22. whereas Version 2.1.0 did not.

The nightmost column in Table | shows two entries for tuned versions of BMK 14 and
BMK22. Times of 1.2 and 6.3 s. respectively. represent a speedup of 6.7 and 0.0 over
the scalar versions. The “"tuning’ consisted of replacing actual benchmark code with
calls 1o the ESSL. This library has undergone extensive development and tuning for the



-6 -

3090 architecture and is hand coded in assembly language. 1BM regards it as a kev item
in the IBM 3090 product offering. While not tuned in the usual sense of recoding
Fortran to take advantage of architectural features. the codes do indicate the
performance gains that mayv be obtained by using ESSL. We ao not expect that large
portions of our scientific codes can be rewritten to take advantage of ESSL.

Overall. the vectorization speedup observed on the benchmark set was always less than three.
Obtaining maximum speedup often involved recoding of loops to assure contiyuous memory
locations. However, the small gain in performance makes extensive code conversion an
uneconomical practice in most production codes.

B. Hydro Results

Hydro 1s a two-dimensional lLagrangian hvdrodynamics code representing codes that are a
significant portion of the l.aboratory workload. Two versions of the code were run on the IBM
3090: the standard version and a version optimized for contiguous veclor machines in which the
first dimension 1s the index for the inner loop. In some cases, it is not possible to interchange the
order of the loops because of dependencies. IBM subsequently ran another version with a number
of user subroutines integrated inline, with single-column arravs made into two-dimensional arravs
the size of the mesh. and with inline Fortran code substituted for Fortran intrinsics for which the
compiler does not generate vector code. This version is denoted the revised version. These
modifications enabled the compiier 1o vectorize 1wo loops that consume significant time. thus. we
begin 10 see some advan*age from the veclor hardware. Two versions were run on the CRAY
X-MP- 48 (single-processor only). the standard version and an optimized version with IF blocks
replaced by Cray intrinsics (necessary because of compiler vectorization inadequacies). On the IBM
machine, compiler direct1ves were applied, but the code ran slower. Cray compiler directives
produced some stoea gains. In Table 1] we report the best scalar and vector execution times for a
problem size of 100 x 100 for 100 time cvcles.

In our hydro runs we saw only modest performance from the vector hardware. For example,
one routine ran about 10% slower in vector made than in scalar mode. The improvement we did see
came from the conversion of one function (SRCHDY , a binary search and interpolation routine) to
one-dimensional arguments. A« described above. substantial modification was required to obtain
vectorization of two major loops, with the introduction of obscure code to accomplish the
vectorization of relatively straightforward code Speedup for those loops was about a factor of 2.
Future improvements 1o the comprler may make these modifications unnecessary.

C. ESN Results

We also ran ESN. a deterministic particle transport code. at Gaithersburg. Although ESN is
not a part of the standard benchmark set, we have been using 1t as a ool in parallel processing
research and have collected Liming data for 1t on a variety of machines. The code i1s almost entirely
scalar, and the time we obtained on the 3090 is somewhat slower than that for the X-MP (see Table
IHI). A slight performance degradation occurred on the 3090 in vector mode. (Vector Level 1 and
vector level 2 produced incerrect results with the comp.ler we used.) Examination of the compiler
output reveals vectorization of a number of short loops (vector length 11 or less). which ran faster
in scalar mode.



V1. DISCUSSION

A. Effects of Cache

We present the results from BMK8A1 and BMK8A2 in Tables IV and V with the following
caveal: When comparing these results with previous benchmark reports on other machines. keep in
mind that the results for the other machines represent memory-to-memo~y times, while the IEM
3090 times may be for cache-to-cache execution. Therefore. we regard these numbers as
considerably inaccurate in describing memory-to-memory performance on the 3090. However,
they do give some indication of the expected performance of codes with similar cache/memory
access characteristics. To see the effect of main memory references, we refer the reader to Table V.
These results are megaflop rates for various length vector operations, with a stride of 23. As an
example. consider the first operation. V = V' + S, where a scalar is added to each element of a vector,
and the result is stored into ¢ second vector. Note the megaflop rate falls from 11.98 for a vector
length of 100 10 1.66 for a vector length of 200. How can this be understood? First, recall that the
cache on the Model 200 is 64 kbytes. which in double-precision arithmetic is § kwords. Next.
consider how the execution times (and hence the megafiop rates) are obtained for BMK8A2: an
outer loop runs repeated instances of the inner loop. which does the actual vector operations. This
i3 to give a measurably long time for the calculations. Execution time is determined by dividing
the time for ul] the ouvter loops by the number of outer loops. For a stride of 23 and a vector
length of 100, 2300 words of memory are required. vhile two such vectors ~pan 4600 words of
memory. For a vector length of 200, the two vectors span 9200 words of memory. We can now
see why the execution rale drops between a vector length of 100 and 200: for the shorter vector,
both vectors fit entirely within cache. Repezted executions of tuhe inner loop do not require
references 10 main memory once the cache is loaded the first time. For vector length of 200,
however, not all of both vectors will fit in memory. Therefore. repeated execution of the outer
loop would require some portion of the cache to be overwritten each time, forcing references 10
main memory. The performance cost is apparent.

We also note that the rates for the final vector operation, $ =S + V1(I) * V2(1). are
anomalously high. We believe this to be due to the compiler optimizing the code. so that it is no
longer executing the proper instruztion flow for valid imings (the results. of course. would sull be
correct).

B. Compiler Performance

Compuler technology and philosophy necessarily play a large role in determining performance
on a given computer. The benchmark codes reported here were executed for comparison with
results from other computers in essentially an “'as-1s” mode. In most instances, the only allowable
changes were Fortran changes necessary to enable proper execution of the code.

Because the vector unit on the 3090 is an add-on feature 10 existing hardware, compatibility
ana price/ performance ratios superseded absolute performance issues. Use of the cache for all
vector operations, rather than a fast, interleaved. main memory. puts restrictions on the
effectiveness of vectorization. The compiler vectorizes cautiously, basing decisions on statistics
from the cost analvzer regarding the most efficient mode of operation for a given code. IBM has
chosen to optimize the scalar features of its compiler for the 3090. Codes that are essentially scalar
ran with times comparable to scalar execution on the CRAY X-MP. Judicious use of the compiler
directives is seen by IBM as the means by which a user can override the defaults and obtain greater
performance.



An example of directive use substantially improving the performance of a code can be seen in
BMK14. a program consisting primarily of matrix operations. Untuned. the scalar and vector
versions differ by less than 5% in their execulion limes because of stride problems (row access
rather than column) inhibiuing vectorization. By adding the compiler directive "PREFER
VECTOR™ 10 the code in the subroutine SAXPY to ignore non-contiguous memory accesses. a
speedup of nearly two was obtained. As with all directives usage. specific knowledge of the
particular code and parameters is necessary.

It is important to understand the characteristics of an installation’s workload. Sites whose
codes are primarily scalar in nature would benefit from the great eflort put into scalar optimization
on the 3090. with added performance in those cases where vectorization was effected. Highly
vectorized workloads may involve restructuring programs in order to make use of the restrictive
application of the vector units on this machine.

VII. THE VS FORTRAN MULTITASKING FACILITY (MTF)

A. Description

One objective of this benchmark trip was to gain some experience with the VS Fortran MTF.
The current version of IBM's multiltasking support is primitive. It allows only for task creation
and synchronization via “forks” and “'joins’” (which are implemented in VS Fortran as "CALL
DSPTCH'" and "CALL SYNCH." respe:tively). Only the main task may fork sub-tasks. No
mutual exclusion or message-passing primitives such as locks or events are available. Additionally.
data sharing between the main program and any of its sub-tasks via COMMON blocks is not
allowed. All common data must be explic.Lly passed as parameters in the DSPTCH of the sub-task
routine. Although COMMON block data sharing among subprograms within a given sub-task is
allowed. this fact was not made known 1o us until our arrival at Gaithersburg. The reason for
these COMMON block implementation details is that although the 3090 hardware is itself a
shared-memory architecture, multitasked jobs do not share a common memory space. Rather, an
image of the part of the code to be multitasked is reproduced in memory. once for each
instantiation of the sub-task. Therefore, COMMON block usage amcng subroutines in & sub-task
appears 1o be approximately equivalent to the Cray Research TASK COMMON, while there is no
true (global) COMMON.

In summary. we note the following inconveniences/shortcomings:

1. Programs musl be re-coded to eliminate data sharing other Lhan explicitly passed
parameters. or what amounts to TASK COMMON.

2. Algorithms must be restructured to eliminate locks. events, barriers, critical sections.
etc.

3. The program must be physically separated into two files, one containing the main
program and all subprograms it calls, the other containing the subroutine to be
“dispatched” and any subprograms it calls. Both files are compiled and loaded
independently and subsequently linked together. We did not explore the question of
calling a given subprogram from both the main and dispatched subroutines.

4. The VS Fortran Interactive Debug Facility. a good debugger for sequential codes. is
incapable of detugging codes utilizing MTF.



B. Multitasked Codes

We ariginally intended 1o run PIC (Particle in Cell). ESN (a discrete ordinates transport
code). and several examples from the IBM Multitaskir. Facility User’'s Guide. However. because of
the MTF limitations described above, the recoded serial \ ersion of ESN was never successfully
debugged during the trip. We did. however. use the MVS Interactive Debug Facility while
debugging the riew serial version. which enabled us 10 find several errors. Joanne Martin of IBM
Yorktown has provided us with some timings from her multitasked version of ESN that she
successfully ran on a Model 400. PIC and the example codes did run successfully in multitasked
mode.

One problem we encountered is that the function we used for measuring CPL execution time
did not work during the multitasking runs. Therefore. CPU and wall-clock® times for all MTF
runs were obiained from the MVS timing data included in the dayfile for the job.

C. PIC

The version of PIC we ran using the MTF facility on the IBM 3090/200 was originaily
developed for use with Floating Point Systems’ array processors. in this algorithm, the
initialization phase can be .dopted for 1aulti-thread execution, although this was not done on the
3090. After initialization, the grid is replicated for each processor. and the particle “push.”
requiring greater than 95% of the total execution time, is done in parallel. At this point the tasks
are synchronized and the Poisson equation is solved and electric field for the current iteration is
computed.

The replicative grid scheme avoids the use of a critical section of code during the particle push
and is necessary on the 3090 because of the absence of locks. However, it 1s not necessarily the
most efficient parallel PIC algorithm.

The results for two problem sets. one processing 80000 particles and the other processing
35000 particles on a 32-by-32 grid for 60 time steps, are lisied in Table V1. The multitasking
speedup. shown in the third column of Table V1. is defined as the MV'S CPU time divided by the
MV'S wall clock time. Note that the internal timing in the sequential version of PIC (which is not
shown in the 1able) yields a result of 83.9 s on the 3090,200. The corresponding time on the
CRAY X-MP/48, using the CFT 1.14 compiler. is approximately 67.0 s (obtained during production
time).

The two-processor speedups for the 35000 and 80000 particle problems were 1.56 and 1.73.
respectively. suggesting that multitasking on the 3090 benefits significantly from larger 1ask
granularity. We also present times from a four-processor run on a Model 400, provided by
Joanne Martin.

D. IBM Examples

Results oblained multitasking several examples from the IBM Muluiasking Facility User’s
Guide are listed in Table VIl. These examples were implemented with an outer loop giving
multiple trips through the inner loops. The purpose of this was to generate enougn computation to
take a measurable time. These examples were intended as a simple test of whether MTF worked:
they do not represent codes from our workload.

*Wall clock “ime 1s defined as the total time required 1o execute the job.



-10-

E. ESN

Speedups for ESN are presented in Table VIII for the 3090 Model 400 and for the CRAY
X-MP/48 on one. two. and four processors. These were obtained from the run times provided by
Joanne Ma. tin for the 3090. Since actual execution times were not available for the X-MP, only
speedups are reported here (but see Lne section on the serial version of ESN above). Note that the
X-MP speedups were obtained on an X-MP/48 running the Cray Operating System (CGS). It
appears the Cray does a somewhat better job on ESN. but we refrain from speculating on the causes
as this time.

VIIl. CONCLUSIONS

A. Scalar Performance

The IBM 3090 with the VS Fortran compiler delivers very good scalar performance--
comparable with a CRAY X-MP in many cases. For a predominately scalar workload. we would
expect the IBM 3090 1o deliver excellent performance.

B. Vector Performance

The IBM 3090 Vector Facility appears to meet its design goal of delivering increased
performance on some scientific and engineering codes at a small incremental cost. However, because
of the 3090's cache. a large class of problems will not speed up 1n vector mode without significant
recoding. Furthermore. the maximum speedup that can be attained without exiensive hand-coding
in assembly language is in the neighborhood of four times scalar. as opposed to the factors of 10 or
more commonly seen on a Cray. Since many of the kernels of our large production codes aye
Lighly vectorized, we would expect them to run significantly slower on the 3090 than on the CRAY
X-MP class of machines. Because absolute performance is more important 1o us thar. cost
effectiveness, we cannot recommend the 3090 with Vector Facility for our large scientific codes.

C. MTF

MTF on the 3090 represents at best a first approximation to a generally usable multitasking
environment. The lack of common memory. with the associated passing of shared data in
parameter lists, by itself precludes implementing a producuion code under MTF. Furthermore, the
lack of all but the most rudimentary of synchronization conslructs restricts its use to a very small
clats of problems in which performance is not limited by load balancing, granularity, or data-
sharing issues.

D. Summary

The IBM 3090 with Vector Facility 1s an extremely interesting machine because 1t combines
very good scalar performance wiih enhanced vector and multitasking performance. For many IBM
installations with a large scientific workload. the 3090 vector MTF combination may be 4n ideal
means of increasing throughput at minimum cost. However. as we have noted above, neither the
vector nor multitasking capabilities are sufficiently developed to make the 3090 rompetitive with
our current worker machines for our large-scale scientific codes.



-11-

IX. ACKNOWLEDGEMENTS

We thank many people at several IBM offices. including Wayne lvester, Tejpal Chadha. and -
Steve Sporzynski of Gaithersburg: Doyce Nix and Deanna Skinner of Santa Fe: and Carl Ledbetter,
Maria Brumbaugh, Greg Holton, Steve Thomas. Kevin Jones. Steve Hamilton. David Soi. and Troy
Wilson of Kingston. Joanne Martin of IBM Yorktown also provided valuable inut to this report.

Special thanks also 1o Tom Stup of the Los Alamos Computer Systems Group for his help in
preparing the benchmark source code tapes.

This work was performed under the auspices of the U.S. Department of Energy. contract
W-7405-Eng. 36.

REFERENCE

1. James H. Griffin and Miargaret L. Simmons. “"Los Alamos National Laboratory Computer
Benchmarking 1983.” Los Alamos National Laboratory report LA-10151-MS (June 1984).



Table I. Benchmark Execution Times (s)

Program CRAY IBM
Name X-MP/48 3090
V S \% S Tuned

1 57.9 56.9 16.8 17.4

4A 43 7.9 13.5 10.7

5 233 231 21.5 26.7

§A1 68.6 515.7 2948 426.8

11A 5.7 14.9 12.4 28.5

11B 5.4 14.5 12.8 30.6

14 1.8 11.8 114 12.0 1.2
21A 7.2 7.9 7.5 7.8

22 9.3 47.5 41.7 419 6.3
SIMPLE

32X32 2.0 5.1 4.5 6.5

64X 64 8.4 21.4 18.9 26.3

96X 96 18.2 49.1 3956 68.6

Table II. Hydro Execution Times (s)

Standard Optimized Revised
___Machine V S \Y S \ S
IBM 3090 2049 20486 166 158.0 127.6 1589

CRAY X-MP/48 524 1036  20.8*  96.5* . -
‘-gc;\\;rth;nnmz':nrep—oﬁed for the X-MP benchmarks because of
the library routines being used on this machine.

Table 11I. ESN Execution Tim:_??_si)
Machine \Y o Aﬁd
IBM 3090 254 23.7

CRAY X-MP 48 179 119




-13-

Table IV. Resulu of Benchmark 8A1

RATES (IN MFLOPS) ON IBM 3090 FOR SCALAR CODE
VECTORS ARE STORED IN CONSECUTIVE LOCATIONS

NSTEP-1
Operation Vector Length
10 25 50 100 200 500 1000 2000 5600 10000
VaVaS§ 5.41 620 6.27 6.3 630 .35 635 6.34 5.13 4.61
Va§*'V 594 6.14 6.07 6.29 6.49 6.27 6.13 6.41 5.22 4.62
VeVav 6.51 .93 7.06 7.13 1.14 718 717 7.18 4.22 4.27
VaVrv s.01 s.20 5.7 5.35 5.51 3.34 519 3.6 .56 3.62
V=\.§'V 1.72 6.12 8.37 §.5) 8.58 8.27 8.06 8.03 5.95 6.22
VaVTv.§ 7.83 5.07 8.01 423 5.44 §.22 4.06 8.00 6.04 6.00
Vovev. v 7.67 5.00 ¥.00 k.23 h.44 k.23 7.98 7.92 5.04 5.56
VS LSy 7.99 §.19 8.25 5.44 4.0 N.20 8.08 y.16 6.80 6.74
VaVevayvey .68 7.92 K.1] §.22 027 8.19 KOS 6.17 .93 5.93
V-V(IND)+S 4.06 4.3 4.41 4.05 4.25 3.45 2.90 2.43 2.3 2.52
V(IND) .\*V .92 3.06 3.07 .15 l.14 2.38 1.92 1.78 1.75 1.77
V{IND)-V(IND).V*V 515 5.4} 557 1.84 3.70 1.9% 1.94 1.97 1.87 1.9%
V-V VEVIIND) 510 542 5.53 5.13 5.44 1.99 .49 3 3n .
SUB CALLS 0.49 0.49 0.49 0.49 (.49 0.49 0.49 0.49 0.44 0.49
RATES (IN MFLOPS' ON 1BM 3090 FOR VECTOR CODE
VECTORS ARE STORED IN CONSECUTIVE LOCATIONS
NSTEP- 1
Operation Vector Length
10 23 50 100 200 00 1000 2000 3000 10000
V-V.§ )5Sk 0.65 11.7% 1491 1692 19.4] 1982 20,03 10.96 9.26
V.SV L4 .26 11.58 1477 16.70  19.19 19,59 19,79 109 9.21
VoV y 2.80 .08 noo 109 1199 103 1387 1107 6.62 6.65
ALY 2.70 S.4v NA7 1081 1179 LN 1136 1346 6.8 6.59
AR 1A Y 541 1099 16941 2162 2160 2041 26.77 26,97 1318 1).2]
V-Vvev.§ 4.80 943 J4.08 1755 I1KAN 2070 2099 .04 1187 1162
V-Vev,. v 4.1 578 1328 1694 1K15 2008 2028 1920 10,74 10,43
VaS'V.8V 7.8C 1596 2479 1192 3479 19,00 305 19.K)  1Ved 19.69
VaVey. ey 5.50 1093 lo.d) 2092 22,17 242K 2300 15.64 1329 1LN2
V-V(IND)S 2.28 412 620 632 7.26 5.14 194 J.20 118 125
V(IND)-V*Y 2.00 .12 .01 .00 6.07 MR lle 2,01 2.00 2.0
VUND)-VIND): V'V 106 193 8.27 6.22 AR 1.92 1.91 1.K9 1.k5% 1.91
VaVaVEVIND) 1% el N.R9 9.72 10.Mm2 6.15 4.8 4.61 4.5 4.65
0.44

SUB CALLS 0.47 0.47 0.47 0.47 0.47 0.047 0.46 0.47 0.46




-14-

Table V. Results of Benchmark BA2 for Stride at 23 (MFLOPS)

STEP=23
Operation Vecior Length

10 25 50 100 200 500 1000
VaV4S 3.49 7.30 1022 1198 1.66 0.82 0.76
V=StV 3.30 6.96 990 11.75 1.68 0.82 0.76
VeViV 2.76 5.60 7.83 6.10 0.71 0.59 0.57
V=YV 2.69 5.49 1.72 6.05 0.7 0.59 0.57
VaV4S*V 530 1085 1532 1193 1.42 1.19 1.14
VeVOVv S 4,76 9.41 1299 10.73 1.40 1.18 1.13
V=V 447 894 12.54 2.47 1.05 0.88 0.88
VaS*VeS'V 7.65 1577 2247 1792 2.12 1.78 1.1
Ve=VovVe ey 5.59 11.10 15.61 1.96 1.15 1.09 1.09
V=V{IND)-S 2.25 429 3.70 2.59 0.68 0.56 0.55
V(IND)=\"*V 1.89 2.99 3.72 1.22 0.50 0.44 0.44
VIIND)=V(IND)+V*V 2.98 4.7 499 1.15 on 0.70 0.69
V=\V+ V'V IND) 3.29 4.63 498 1.21 0.76 0.71 0N
SUBCALLS 0.49 0.49 0.49 0.49 0.49 0.49 0.51
S=S+V1(1)*Val) 71.38 8136 8496 B86.49 7742 69.70 68.58

Table V1. Results of Multitasking the PIC Code on the IBM 3090/200

A. 8N FParticle Problem

- _CPU Time (s)  Wali Clock {s)  Speedup

Sequential Version

(No Multnaskirg Calls) LR, 1.00
4 Task Version (4 CPUs) LYAY) 26.6 3.30
3 Task Version (2 C’Us) 59.7 65.1 1.3%
2 Task Version " 90.4 516 1.75

l_lnsk Version b1.2 91 2 ) ()_.‘)i_

B. 3484& Particle Problem

A CPL Time (s)  Wall Clock (s) _Speedup
Seguential Version 332 1.00

2 Tasa Version (2 CPUs) 35.4 22.7 1.56
1 'l'ask \'ersmp___ " 314 _—_'1("“ 0.91




-15-

Table VII. Results of Multitasking the MTF Examples on the IBM 3090/200

A. Example ]
CPU Time (s) Wall Clock (s)  Speedup
1 Task. 10000 repetitions 338.2 3421 0.99
2 Tasks, 10000 repetitions 3384 176.1 1.92
1 Task. 1000 repetitions 34.0 36.5 0.93
2 Tasks, 1000 repetitions 34.0 20.33 1.67
1 Task. 100 repetitions 36 6.3 0.57
2 Tasks, 100 repetitions 36 4.9 0.73

B. Example 2

CPU Time (s) Wall Clock (s)  Speedup

1 Task. 10000 repetitions 271.0 274.6 0.99
2 Tasks. 100X} repetitions 27110 143.5 1.89
1 Task. 1(XX) repetitions 27.2 30.13 0.90
2 Tasks. 1000 repetitions 27.2 17.3 1.57
1 Task. 100 repetitions 29 5.3 0.55
2 Tasks. 100 repe itions 28 4.4 0.64

Table VIIl, ESN Multitasking Speedups IBM 3090/400 and CRAY X-MP/48

... 3090Speedup X-MP Speedup
1 Task .07 1.00
2 Tasks 1.88 1.99

4 Tasks 317 37




